top of page

PUBLICATIONS

40. Muthusamy, S., Kannan, S., Lee, M., Vijayavenkataraman, S., Lu, W.F., Fuh, J. Y. H., Sriram, G., Cao, T. (2020). 3D Bioprinting and Microscale Organization of Vascularized Tissue Constructs using Collagen-based Bioink. (Under review)

39. Quadri, F., Soman, S.S., Vijayavenkataraman, S. (2020). Progress in Cardiovascular Bioprinting. (Under review).

2021

2020

38. Srinivas, R., Pooya, D., Vijayavenkataraman, S., Jia Heng, T., Anbu Mozhi, T., Robinson, K.S., Bin, W., Fuh, J. Y. H., Dicolandrea, T., Zhao, H., Birgit, E.L., Wang, C.H. (2020). A systematic approach for 3D bio-printing full thickness human skin on a specific PCL dermal scaffold. Bioprinting, e00123. https://doi.org/10.1016/j.bprint.2020.e00123

 

37. Soman, S.S., Vijayavenkataraman, S. (2020). Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. International Journal of Molecular Sciences, 21(16), 5762. https://doi.org/10.3390/ijms21165792

36. Soman, S.S., Vijayavenkataraman, S. (2020). Applications of 3D Bioprinted induced Pluripotent Stem Cells (iPSCs) in Healthcare. International Journal of Bioprinting, 6(4), 280. DOI: 10.18063/ijb.v6i4.280.

35. Ravi, S.K., Singh, V.K., Suresh, L., Ku, C., Sanjairaj, V., Nandakumar, D.K., Chen, Y., Sun, W., Sit, P.H., Tan, S.C. (2020). Hydro‐Assisted Self‐Regenerating Brominated N‐Alkylated Thiophene Diketopyrrolopyrrole Dye Nanofibers—A Sustainable Synthesis Route for Renewable Air Filter Materials. Small,16(14):1906319. 

https://doi.org/10.1002/smll.201906319

34. Vijayavenkataraman, S., Anna, G.S., & Teo, J.C.M. (2020). Specialized multi-material printheads for 3D hydrogel printing. IEEE Nanotechnology Magazine, 14(3), 42-52. doi: 10.1109/MNANO.2020.2966065.

33. Vijayavenkataraman, S., Lai, Y.K., & Lu, W. F. (2020). A new design of 3D-printed orthopedic bone plates with auxetic structures to mitigate stress shielding and improve intra-operative bending. Bio-Design and Manufacturing, 3, 98-108. https://doi.org/10.1007/s42242-020-00066-8

32. Vijayavenkataraman, S. (2020). Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomaterialia, 106, 54-69. https://doi.org/10.1016/j.actbio.2020.02.003

31. Vijayavenkataraman, S., Lai, Y.K., & Lu, W. F. (2020). 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants. Materials & Design, 108602. 

https://doi.org/10.1016/j.matdes.2020.108602

2019

30. Vijayavenkataraman, S., Kannan, S., Cao, T., Fuh, J.Y.H., Sriram, G., & Lu, W. F. (2019). 3D-Printed PCL/PPy Conductive Scaffolds as Three-dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Frontiers in Bioengineering and Biotechnology, 7, 266. https://doi.org/10.3389/fbioe.2019.00266

29. Vijayavenkataraman, S., Lu, W. F., & Fuh, J. Y. H. (2019). Bioprinting and Biofabrication for Tissue Engineering in Asia. International Journal of Bioprinting, 5(2.1), 1-2. doi: 10.18063/ijb.v5i2.1.231

28. Vijayavenkataraman, S., Vialli, N., Fuh, J. Y. H., & Lu, W. F. (2019). Conductive Collagen/PPy-b-PCL hydrogel for bioprinting of neural tissue constructs. International Journal of Bioprinting, 5(2.1), 31-43. doi:10.18063/ijb.v5i2.1.229

27. Vijayavenkataraman, S., Zhang, S., Thaharah, S., Lu, W. F., & Fuh, J. Y. H. (2019). 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair. Artificial Organs, 43(5), 515-523. https://doi.org/10.1111/aor.13360

 

26. Vijayavenkataraman, S., Zhang, S., Thaharah, S., Lu, W. F., & Fuh, J. Y. H. (2019). Electrohydrodynamic Jet 3D-Printed PCL/PAA Conductive Scaffolds with Tunable Biodegradability as Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Materials & Design, 162, 171-184. https://doi.org/10.1016/j.matdes.2018.11.044

25. Zhang, S., Vijayavenkataraman, S., Chong, G.L., Fuh, J. Y. H., & Lu, W. F. (2019). Computational Design and Optimization of Nerve Guidance Conduits for Improved Mechanical Properties and Permeability. ASME Journal of Biomechanical Engineering, 141(5), 051007. doi:10.1115/1.4043036 

24. Zhang, S., Vijayavenkataraman, S., Lu, W. F., & Fuh, J. Y. H. (2019). A Review on the Use of Computational Methods to Characterize, Design, and Optimize Tissue Engineering Scaffolds, with a Potential in 3D Printing Fabrication. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(5), 1329-1351. 

https://doi.org/10.1002/jbm.b.34226

23. Jia Heng, T., Anbu Mozhi, T., Pooya, D., Srinivas, R., Vijayavenkataraman, S.,Yang, Q., Dicolandrea, T., Zhao, H., Fuh, J. Y. H., Liou, Y.C., Wang, C.H. (2019). Investigation of the Application of a Taylor-Couette Bioreactor in the Post-processing of Bioprinted Human Dermal Tissue. Biochemical Engineering Journal 151, 107317. https://doi.org/10.1016/j.bej.2019.107317

2018

22. Vijayavenkataraman, S., Zhang, S., Thaharah, S., Sriram, G., Lu, W. F., & Fuh, J. Y. H. (2018). Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers, 10(7), 753.  https://doi.org/10.3390/polym10070753

 

21. Vijayavenkataraman, S., Zhang, S., Lu, W. F., & Fuh, J. Y. H. (2018). Electrohydrodynamic-jetting (EHD-jet) 3D-printed functionally graded scaffolds for tissue engineering applications. Journal of Materials Research, 1-13. 

https://doi.org/10.1557/jmr.2018.159

20. Vijayavenkataraman, S., Zhang, L., Zhang, S., Fuh, J. Y. H., & Lu, W. F. (2018). Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach towards Biomimetic Scaffold Design. ACS Applied Bio Materials, 1 (2), 259-269. DOI: 10.1021/acsabm.8b00052

19. Bin, W., Nobuyoshi, T., Vijayavenkataraman, S., Khek, Y.H., Yang, W., Lu, W. F., & Fuh, J. Y. H. (2018). Pluronic F127 blended Polycaprolactone scaffolds via e-jetting for esophageal tissue engineering. Journal of Materials Science: Materials in Medicine 29 (9), 140.

18. Bhargav, A., Sanjairaj, V., Rosa, V., Feng, L. W., & Fuh YH, J. (2018). Applications of additive manufacturing in dentistry: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(5), 2058-2064.

17. Vijayavenkataraman, S., Yan, W.C., Lu, W. F., Wang, C.H., & Fuh, J. Y. H. (2018). 3D Bioprinting of Tissues and Organs for Regenerative Medicine . Advanced Drug Delivery Reviews, 132, 296-332. 

https://doi.org/10.1016/j.addr.2018.07.004 

16. Yan, W.C., Pooya, D., Vijayavenkataraman, S., Tian, Y., Ng, W.C., Fuh, J. Y. H., Robinson, K.S., & Wang, C.H. (2018). 3D-bioprinting of skin tissue: From pre-processing to final product evaluation. Advanced Drug Delivery Reviews, 132, 270-295. https://doi.org/10.1016/j.addr.2018.07.016

15. Bin, W., Shihao, L., Jia, S., Vijayavenkataraman, S., Dieter, T., Lu, W. F., & Fuh, J. Y. H. (2018). Homogeneous Cell Printing on Porous PCL/F127 Tissue Engineering Scaffolds. Bioprinting, e00030.

2017

14. Vijayavenkataraman, S., Shuo, Z., Fuh, J. Y., & Lu, W. F. (2017). Design of Three-Dimensional Scaffolds with Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An In Silico Study. Bioengineering, 4(3), 66.

13. Singh, V. K., Chitumalla, R. K., Ravi, S. K., Zhang, Y., Xi, Y., Sanjairaj, V., Zhang, C., Jang, J., & Tan, S. C. (2017). Inkjet-Printable Hydrochromic Paper for Encrypting Information and Anticounterfeiting. ACS Applied Materials & Interfaces, 9(38), 33071-33079.

 

12. Vijayavenkataraman, S. (2017). 3D bioprinted skin: the first ‘to-be’successful printed organ?. Journal of 3D Printing in Medicine, 1(3). (Invited Editorial)

 

11. Vijayavenkataraman, S., Fuh, J. Y., & Lu, W. F. (2017). 3D Printing and 3D Bioprinting in Pediatrics. Bioengineering, 4(3), 63. (Invited Paper)

10. Wu, Y., Wu, B., Vijayavenkataraman, S., San Wong, Y., & Fuh, J. Y. H. (2017). Crimped fiber with controllable patterns fabricated via electrohydrodynamic jet printing. Materials & Design, 131, 384-393.

 

9. Jie, S., Haoyong, Y., Chaw, T. L., Chiang, C. C., & Vijayavenkataraman, S. (2017). An Interactive Upper Limb Rehab Device for Elderly Stroke Patients. Procedia CIRP, 60, 488-493.

 

8. Sun, J., Vijayavenkataraman, S., & Liu, H. (2017). An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials, 10(1), 29.

7. Liu, H., Vijayavenkataraman, S., Wang, D., Jing, L., Sun, J., & He, K. (2017). Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds. International Journal of Bioprinting, 3(1).

2016

6. Vijayavenkataraman, S. (2016). A Perspective on Bioprinting Ethics. Artificial Organs, 40(11), 1033-1038. (Invited Editorial)

5. Vijayavenkataraman, S., Lu, W. F., & Fuh, J. Y. H. (2016). 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication, 8(3), 032001.

4. Vijayavenkataraman, S., Lu, W. F., & Fuh, J. Y. H. (2016). 3D bioprinting–An Ethical, Legal and Social Aspects (ELSA) framework. Bioprinting, 1, 11-21.

3. Wang, H., Vijayavenkataraman, S., Wu, Y., Shu, Z., Sun, J., & Hsi, J. F. Y. (2016). Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries. International Journal of Bioprinting, 2(1).

2011 - 2015

b. Narasimhan, V., Vijayavenkataraman, S., & Sungyong, P. (2015). Low-cost spin-coatable, Transferable, and High-k Ion Gel Dielectric for Flexible Eletrowetting. TechConnect World Innovation Conference & Exposition, Washington DC, USA, June 14-17, 2015.

2. VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652-2670.

1. VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of climate change, mitigation and adaptation. Renewable and Sustainable Energy Reviews, 16(1), 878-897.

a. VijayaVenkataRaman, S., Iniyan, S., Suganthi, L., & Goic, R. Wind Energy Potential Estimation in India. TechConnect World, Clean Technology Conference & Expo, June 21-24, 2010, Anaheim, CA

bottom of page